
Episode 4. Principles of Congestion Control

Baochun Li
Department of Electrical and Computer Engineering

University of Toronto

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Congestion control — a
network-wide problem

of managing
shared resources

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Saltzer Chapter 7.6.1, 7.6.2,
7.6.3, 7.6.4, 7.6.5; Keshav
Chapter 9.7, CUBIC paper,

BBR paper

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Shared resources: everywhere in a system

Resource sharing examples in systems:
Many virtual processors (threads) sharing a few physical
processors using a thread manager
A multilevel memory manager creates the illusion of large, fast
virtual memories by combining a small and fast shared
memory with large and slow storage devices

In networks, the resource that is shared is a set of
communication links and the supporting packet
forwarding switches

They are geographically and administratively distributed —
managing them is more complex!

4

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Analogy: Supermarket vs. Packet Switch

Queues are started to manage the problem that packets
may arrive at a switch at a time when the outgoing link is
already busy transmitting another packet

Just like checkout lines in the supermarket

Any time there is a shared resource, and the demand for
that resource comes from several statistically
independent sources, there will be fluctuations in the
arrival of load

Thus there will be fluctuations in the length of the queue, and the
time spent waiting for service in the queue
Offered load > capacity of a resource: overloaded

5

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Congestion Collapse

Competition for resource may lead to waste of resource
Counter-intuitive, but the supermarket analogy can help
understand it

Customers who are tired of waiting may just walk out, leaving filled
shopping carts behind
Someone has to put the goods from abandoned carts back to the
shelves
One of two of the checkout clerks leave their registers to do so
The rate of sales being rung up drops while they are away
The queues at the remaining registers grow longer
Causing more people to abandon their carts
Eventually, the clerks will be doing nothing but restocking

6

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Self-sustaining nature of congestion collapse
Once temporary congestion induces a collapse, even if the
offered load drops back to a level that the resource can
handle, the already induced waste rate can continue to
exceed the capacity of the resource

This will cause it to continue to waste the resource, remain congested
indefinitely

7

Saltzer & Kaashoek Ch. 7, p. 88 June 25, 2009 8:22 am

CHAPTER 7 The Network as a System and as a System Component7–88

When developing or evaluating a resource management scheme, it is important to
keep in mind that you can’t squeeze blood out of a turnip: if a resource is congested,
either temporarily or chronically, delays in receiving service are inevitable. The best a
management scheme can do is redistribute the total amount of delay among waiting cus-
tomers. The primary goal of resource management is usually quite simple: to avoid
congestion collapse. Occasionally other goals, such as enforcing a policy about who gets
delayed, are suggested, but these goals are often hard to define and harder to achieve.
(Doling out delays is a tricky business; overall satisfaction may be higher if a resource
serves a few customers well and completely discourages the remainder, rather than leav-
ing all equally disappointed.)

Chapter 6 suggested two general approaches to managing congestion. Either:

• increase the capacity of the resource, or
• reduce the offered load.

In both cases the goal is to move quickly to a state in which the load is less than the capac-
ity of the resource. When measures are taken to reduce offered load, it is useful to
separately identify the intended load, which would have been offered in the absence of

FIGURE 7.42

Offered load versus useful work done. The more work offered to an ideal unlimited resource,
the more work gets done, as indicated by the 45-degree unlimited resource line. Real
resources are limited, but in the case with no waste, useful work asymptotically approaches
the capacity of the resource. On the other hand, if overloading the resource also wastes it, use-
ful work can decline when offered load increases, as shown by the congestion collapse line.

useful
work

offered load

unlimited resource

limited resource
with no waste

congestion
collapse

capacity
of a limited
resource

done

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Primary goal of resource management

Avoid congestion collapse!
by increasing the capacity of the resource
by reducing the offered load

A congestion control system is fundamentally a
feedback system

A delay in the feedback path can lead to
oscillations in load

8

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Supermarket and Call Centre Analogies

In a supermarket, a store manager can be used to watch the
queues at the checkout lines

Whenever there are more than two or three customers in any line, the
manager calls for staff elsewhere in the store to drop what they are
doing, and temporarily take stations as checkout clerks
This practically increases capacity

When you call customer service, you may hear an automatic
response message

“Your call is important to us. It will be 30 minutes to we can answer.”
This may lead some callers to hang up and try again at a different time
This practically decrease load

Both may lead to oscillations
9

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Possible ideas to
address these

challenges (Ch. 7.6.5)

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Overprovisioning

Basic idea: configure each link of the network to have 125% or
200% as much capacity as the offered load at the busiest
minute of the day

Works best on interior links of a large network, where no individual
client represents more than a tiny fraction of the load
Average load offered by a large number of statistically independent
sources is relatively stable

Problems
Odd events can disrupt statistical independence
Overprovisioning on one link will move congestion to another
At the edge, statistical averaging stops working — flash crowd
User usage patterns may adapt to the additional capacity

11

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Pricing in a market: the “invisible hand”

Since network resources are just another commodity with
limited availability, it should be possible to use pricing as a
congestion control mechanism

If demand for a resource temporarily exceeds its capacity, clients will
bid up the price
The increased price will cause some clients to defer their use of the
resource until a time when it is cheaper, thereby reducing offered load
It will also induce additional suppliers to provide more capacity

Challenges —
How do we make it work on the short time scales of congestion?
Clients need a way to predict the costs in the short term, too
There has to be a minimal barrier of entry by alternate suppliers

12

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

How do we address
these challenges?

Decentralized schemes
are extremely scalable

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Case in point:
the Internet

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Cross-layer
Cooperation: Feedback

(Ch. 7.6.3)

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Cross-layer feedback: basic idea

The packet forwarder that notices congestion provides
feedback to one or more end-to-end layer sources
The end-to-end source responds by reducing its offered
load
The best solution: the packet forwarder simply discards
the packet

Simple and reliable!

16

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Which packet to discard?
The choice is not obvious —

The simplest strategy, tail drop, limits the size of the queue, and any packet
that arrives when the queue is full gets discarded
A better technique, called random drop, chooses a victim from the queue
at random

The sources that are contributing the most to congestion are the most likely to
receive the feedback

Another refinement, called early drop, begins dropping packets before the
queue is completely full, in the hope of alerting the source sooner
The goal of early drop is to start reducing the offered load as soon as the
possibility of congestion is detected, rather than waiting till congestion is
confirmed — avoidance rather than recovery
Random drop + early drop: random early detection (RED)

17

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Cross-layer
Cooperation: Control

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What should the end-to-end protocol do?

The end-to-end protocol learns of a lost packet, what
now?
One idea: just retransmit the lost packet, and continue to
send more data as rapidly as its application supplies it

This way, it may discover that by sending packets at the greatest
rate it can sustain, it will push more data through the congested
packet forwarder
The problem: If this is the standard mode of operation of all end
hosts, congestion will set in and all will suffer
“The tragedy of the commons”

19

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Two things the end-to-end protocol can do

Be careful about the use of timers
involves setting the timer’s value

Pace the rate at which it sends data — automatic rate
adaptation

involves managing the flow control window
Both require having an estimate of the round-trip time
between the two ends of the protocol

20

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The retransmit timer
With congestion, an expired timer may imply that either a
queue in the network has grown too long, or a packet
forwarder has intentionally discarded the packet
We need to reduce the rate of retransmissions
Idea: round trip time estimates

develop an estimate of the round trip time by directly measuring it
Longer queuing delays will increase the observed round-trip times
These observations will increase the round-trip estimate used for
setting future retransmit timers

When a timer does expire, exponential backoff for the timer
interval should be used for retransmitting the same packet

Effectively avoids contributing to congestion collapse
21

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Automatic rate adaptation

The flow control window and the receiver’s buffer should both
be at least as large as the bottleneck data rate multiplied by
the round trip time — the BDP (“bandwidth-delay product”)
But if it is larger, it will result in more packets piling up in the
queue of the bottleneck link
We need to ensure that the flow control window is no larger
than necessary

22

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The original design of TCP

In the original TCP design, the only form of acknowledgment
to the sender was “I have received all the bytes up to X.”

But not in the form of “I am missing bytes Y through Z.”

The consequences —
When a timer expired due to a lost packet, as soon as the sender
retransmitted that packet, the timer of the next packet expired, causing
its retransmission
This will repeat until the next acknowledgment returns, a full round trip
later
On long-delay routes, the flow control window may be large
Each discarded packet will trigger retransmission of a window full of
packets — congestion collapse!

23

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Solution?

By the time this effect was noticed, TCP was already
widely deployed, so changes to TCP were severely
constrained — they have to be “backward compatible”
The result — one expired timer leads to slow start

Send just one packet, and wait for its acknowledgment
For each acknowledged packet, add one to the window size
In each RTT, the number of packets that the sender sends doubles
This repeats till

The receiver’s window size has been reached — the network is not the
bottleneck
a packet loss has been detected — how?

24

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Duplicate acknowledgment
The receiving TCP implementation is modified slightly

Whenever it receives an out-of-order packet, it sends back a duplicate of
its latest acknowledgment
Such a duplicate can be interpreted by the sender as a NAK

The sender then operates in an “equilibrium mode”
Upon duplicate acknowledgment, the sender retransmits just the first
unacknowledged packet and also drops its window size to some fixed
fraction of its previous size — after this it probes gently for more capacity
by doing
Additive increase: whenever all the packets in a round-trip time are
successfully acknowledged, the sender increases the window size by 1
Multiplicative decrease: Whenever a duplicate acknowledgment arrives
again, the sender decreases the size of the window again, by a fixed
fraction

25

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The AIMD TCP

26

Saltzer & Kaashoek Ch. 7, p. 96 June 25, 2009 8:22 am

CHAPTER 7 The Network as a System and as a System Component7–96

• Additive increase: Whenever all of the packets in a round trip time are successfully
acknowledged, the sender increases the size of the window by one.

• Multiplicative decrease: Whenever a duplicate acknowledgment arrives, the sender
decreases the size of the window by the fixed fraction.

4. Restart: If the sender’s retransmission timer expires, self-pacing based on ACKs has been
disrupted, perhaps because something in the network has radically changed. So the sender
waits a short time to allow things to settle down, and then goes back to slow start, to allow
assessment of the new condition of the network.

By interpreting a duplicate acknowledgment as a negative acknowledgment for a single packet,
TCP eliminates the massive retransmission blizzard, and by reinitiating slow start on each timer
expiration, it avoids contributing to congestion collapse.

The figure below illustrates the evolution of the TCP window size with time in the case where
the bottleneck is inside the network. TCP begins with one packet and slow start, until it detects
the first packet loss. The sender immediately reduces the window size by half and then begins
gradually increasing it by one for each round trip time until detecting another lost packet. This
sawtooth behavior may continue indefinitely, unless the retransmission timer expires. The
sender pauses and then enters another slow start phase, this time switching to additive increase
as soon as it reaches the window size it would have used previously, which is half the window
size that was in effect before it encountered the latest round of congestion.

This cooperative scheme has not been systematically analyzed, but it seems to work in practice,
even though not all of the traffic on the Internet uses TCP as its end-to-end transport protocol.
The long and variable feedback delays that inevitably accompany lost packet detection by the
use of duplicate acknowledgments induce oscillations (as evidenced by the sawteeth) but the
additive increase—multiplicative decrease algorithms strongly damp those oscillations.

Exercise 7.12 compares slow start with “fast start”, another scheme for establishing an initial
estimate of the window size. There have been dozens (perhaps hundreds) of other proposals for
fixing both real and imaginary, problems in TCP. The interested reader should consult Section
7.4 in the Suggestions for Further Reading.

Window
size

slow start

multiplicative
decrease

additive
increase

timer
expires,

slow start,

delay

Time

again

duplicate acknowledgment

stop sending

received

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

This is where the story
stops in a typical textbook

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

But it is a story far from
what happens in reality!

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Real-world measurement studies have shown

By probing 5000 popular web servers, researchers
have found that only 15-20% uses AIMD TCP!

P. Yang, et al. “TCP Congestion Avoidance Algorithm
Identification,” IEEE ICDCS 2011.

What about the other 80%?
It turns out that web servers, which are what define
the Internet, use a wide variety of different TCP
protocols, each with its own congestion control
protocol

But why?

29

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The fundamental problem with AIMD TCP

As Internet evolves, the number of long latency and
high bandwidth networks grows
The Bandwidth and Delay Product (BDP) — The total
number of packets in flight, determined by the flow
control window size on the sender, must fully utilize
the bandwidth
Standard AIMD TCP increases its congestion window
size too slowly in high BDP environments

Example: Bandwidth 10Gbps, RTT 100ms, Packet size 1250
bytes, takes 10,000 seconds to fully utilize

30

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

New congestion control — design objectives

Highly scalable to high BDP environments
Very slow (gentle) window increase at the
saturation point
Fair to AIMD TCP flows — backward compatibility

31

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Binary Increase Congestion (BIC)

After a packet loss, reduces its window by a
multiplicative factor of β, the default is 0.2
The window size just before reduction is set to Wmax and
after reduction Wmin
In the next step, it finds the midpoint using these two
sizes and jump there — binary search

But if midpoint is very far from Wmin, a constant value called Smax
is used

If no loss, Wmin is set to the new window size

32

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Binary Increase Congestion (BIC)

The process continues until the increment is less than
a constant value of Smin

Then it is set to the maximum window

If no loss, new maximum must be found and it enters
a ”max probing” phase
Window growth function is exactly symmetric to the
previous part

33

BIC is proposed by Injong Rhee’s group at NCSU in an INFOCOM 2004
paper, and later was used in the Linux kernel and set to the default TCP

(since 2.6.13)

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

BIC: During the “congestion epoch”

Congestion epoch: defined as the interval between two
packet losses

34

A. BIC Window Growth Function
Before delving into CUBIC, let us examine the features of

BIC. The main feature of BIC is its unique window growth
function.

Fig. 1 shows the growth function of BIC. When it gets a
packet loss event, BIC reduces its window by a multiplicative
factor �. The window size just before the reduction is set to the
maximum Wmax and the window size just after the reduction is
set to the minimum Wmin. Then, BIC performs a binary search
using these two parameters F by jumping to the GmidpointH
between Wmax and Wmin. Since packet losses have occurred at
Wmax, the window size that the network can currently handle
without loss must be somewhere between these two numbers.

However, jumping to the midpoint could be too much
increase within one RTT, so if the distance between the
midpoint and the current minimum is larger than a fixed
constant, called Smax, BIC increments the current window size
by Smax (linear increase). If BIC does not get packet losses at the
updated window size, that window size becomes the new
minimum. If it gets a packet loss, that window size becomes the
new maximum. This process continues until the window
increment is less than some small constant called Smin at which
point, the window is set to the current maximum. So the
growing function after a window reduction will be most likely
to be a linear one followed by a logarithmic one (marked as
Gadditive increaseH and Gbinary searchH respectively in Fig. 1).

If the window grows past the maximum, the equilibrium
window size must be larger than the current maximum and a
new maximum must be found. BIC enters a new phase called
Gmax probing.H Max probing uses a window growth function
exactly symmetric to those used in additive increase and binary
search F only in a different order: it uses the inverse of binary
search (which is logarithmic; its reciprocal will be exponential)
and then additive increase. Fig. 1 shows the growth function
during max probing. During max probing, the window grows
slowly initially to find the new maximum nearby, and after
some time of slow growth, if it does not find the new maximum
(i.e., packet losses), then it guesses the new maximum is further
away so it switches to a faster increase by switching to additive
increase where the window size is incremented by a large fixed
increment.

The good performance of BIC comes from the slow increase

around Wmax and linear increase during additive increase and
max probing.

B. CUBIC Window Growth Function
Although BIC achieves pretty good scalability, fairness, and

stability during the current high speed environments, the BICSs
growth function can still be too aggressive for TCP, especially
under short RTT or low speed networks. Furthermore, the
several different phases of window control add a lot of
complexity in analyzing the protocol. We have been searching
for a new window growth function that while retaining most of
strengths of BIC (especially, its stability and scalability),
simplifies the window control and enhances its TCP
friendliness.

In this paper, we introduce a new high-speed TCP variant:
CUBIC. As the name of the new protocol represents, the
window growth function of CUBIC is a cubic function, whose
shape is very similar to the growth function of BIC. CUBIC is
designed to simplify and enhance the window control of BIC.
More specifically, the congestion window of CUBIC is
determined by the following function:

max
3)(WKtCWcubic ��� (1)

where C is a scaling factor, t is the elapsed time from the last
window reduction, Wmax is the window size just before the last

window reduction, and 3
max CWK �� , where � is a constant

multiplication decrease factor applied for window reduction at
the time of loss event (i.e., the window reduces to �Wmax at the
time of the last reduction).

Fig. 2 shows the growth function of CUBIC with the origin
at Wmax. The window grows very fast upon a window reduction,
but as it gets closer to Wmax, it slows down its growth. Around
Wmax, the window increment becomes almost zero. Above that,
CUBIC starts probing for more bandwidth in which the
window grows slowly initially, accelerating its growth as it
moves away from Wmax. This slow growth around Wmax
enhances the stability of the protocol, and increases the
utilization of the network while the fast growth away from Wmax
ensures the scalability of the protocol.

The cubic function ensures the intra-protocol fairness among
the competing flows of the same protocol. To see this, suppose
that two flows are competing on the same end-to-end path. The

Wmax

Steady State Behavior

Max Probing

Fig. 2: The Window Growth Function of CUBIC

Wmax

Additive Increase

Max Probing

Fig. 1: The Window Growth Function of BIC

Binary Search

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Problems with BIC

BIC works very well in production, but in low speed or short
RTT networks it is too aggressive for TCP
Different phases like binary search increase, max probing,
Smax and Smin, make its implementation not very efficient
A new congestion control protocol is required to solve these
problems, while keeping its advantages of stability and
scalability

35

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

CUBIC
As the name suggests, it uses cubic function for window
growth
It uses time instead of RTT to increase the window size
It contains a “TCP mode” to behave the same as AIMD TCP
when RTTs are short

36

A. BIC Window Growth Function
Before delving into CUBIC, let us examine the features of

BIC. The main feature of BIC is its unique window growth
function.

Fig. 1 shows the growth function of BIC. When it gets a
packet loss event, BIC reduces its window by a multiplicative
factor �. The window size just before the reduction is set to the
maximum Wmax and the window size just after the reduction is
set to the minimum Wmin. Then, BIC performs a binary search
using these two parameters F by jumping to the GmidpointH
between Wmax and Wmin. Since packet losses have occurred at
Wmax, the window size that the network can currently handle
without loss must be somewhere between these two numbers.

However, jumping to the midpoint could be too much
increase within one RTT, so if the distance between the
midpoint and the current minimum is larger than a fixed
constant, called Smax, BIC increments the current window size
by Smax (linear increase). If BIC does not get packet losses at the
updated window size, that window size becomes the new
minimum. If it gets a packet loss, that window size becomes the
new maximum. This process continues until the window
increment is less than some small constant called Smin at which
point, the window is set to the current maximum. So the
growing function after a window reduction will be most likely
to be a linear one followed by a logarithmic one (marked as
Gadditive increaseH and Gbinary searchH respectively in Fig. 1).

If the window grows past the maximum, the equilibrium
window size must be larger than the current maximum and a
new maximum must be found. BIC enters a new phase called
Gmax probing.H Max probing uses a window growth function
exactly symmetric to those used in additive increase and binary
search F only in a different order: it uses the inverse of binary
search (which is logarithmic; its reciprocal will be exponential)
and then additive increase. Fig. 1 shows the growth function
during max probing. During max probing, the window grows
slowly initially to find the new maximum nearby, and after
some time of slow growth, if it does not find the new maximum
(i.e., packet losses), then it guesses the new maximum is further
away so it switches to a faster increase by switching to additive
increase where the window size is incremented by a large fixed
increment.

The good performance of BIC comes from the slow increase

around Wmax and linear increase during additive increase and
max probing.

B. CUBIC Window Growth Function
Although BIC achieves pretty good scalability, fairness, and

stability during the current high speed environments, the BICSs
growth function can still be too aggressive for TCP, especially
under short RTT or low speed networks. Furthermore, the
several different phases of window control add a lot of
complexity in analyzing the protocol. We have been searching
for a new window growth function that while retaining most of
strengths of BIC (especially, its stability and scalability),
simplifies the window control and enhances its TCP
friendliness.

In this paper, we introduce a new high-speed TCP variant:
CUBIC. As the name of the new protocol represents, the
window growth function of CUBIC is a cubic function, whose
shape is very similar to the growth function of BIC. CUBIC is
designed to simplify and enhance the window control of BIC.
More specifically, the congestion window of CUBIC is
determined by the following function:

max
3)(WKtCWcubic ��� (1)

where C is a scaling factor, t is the elapsed time from the last
window reduction, Wmax is the window size just before the last

window reduction, and 3
max CWK �� , where � is a constant

multiplication decrease factor applied for window reduction at
the time of loss event (i.e., the window reduces to �Wmax at the
time of the last reduction).

Fig. 2 shows the growth function of CUBIC with the origin
at Wmax. The window grows very fast upon a window reduction,
but as it gets closer to Wmax, it slows down its growth. Around
Wmax, the window increment becomes almost zero. Above that,
CUBIC starts probing for more bandwidth in which the
window grows slowly initially, accelerating its growth as it
moves away from Wmax. This slow growth around Wmax
enhances the stability of the protocol, and increases the
utilization of the network while the fast growth away from Wmax
ensures the scalability of the protocol.

The cubic function ensures the intra-protocol fairness among
the competing flows of the same protocol. To see this, suppose
that two flows are competing on the same end-to-end path. The

Wmax

Steady State Behavior

Max Probing

Fig. 2: The Window Growth Function of CUBIC

Wmax

Additive Increase

Max Probing

Fig. 1: The Window Growth Function of BIC

Binary Search

CUBIC, again, was proposed by Injong Rhee’s group at NCSU, and was
later used in the Linux kernel and set to the default TCP (since 2.6.19)

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

CUBIC: Controlling the window size

After a packet loss, reduces its window by a multiplicative
factor of β, the default is 0.2
The window size just before reduction is set to Wmax

After it enters into congestion avoidance, it starts to increase
the window using a cubic function
The plateau of cubic function is set to Wmax

Size of the window grows in concave mode to reach Wmax,
then it enters the convex part

37

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Real-world measurement studies

Over 40% of the web servers uses BIC/CUBIC TCP!
P. Yang, et al. “TCP Congestion Avoidance Algorithm
Identification,” IEEE ICDCS 2011.

38

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

BBR: Congestion-Based
Congestion Control

(Google Inc., make-tcp-fast project,
available in Linux Kernel since 4.9)

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

BBR: Main Ideas

BBR algorithm differs from loss-based congestion
control in that it pays relatively little attention to
packet loss
Instead, it focuses on the actual bottleneck bandwidth
In the “startup” state, it behaves like most traditional
congestion-control algorithms

quickly ramps up the sending rate in an attempt to
measure the bottleneck bandwidth

41

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

BBR: Stop Ramping Up Early

Instead of continuing to ramp up until it experiences a
dropped packet, it watches the bottleneck bandwidth
measured for the last several round-trip times
Once the bottleneck bandwidth stops rising, BBR
concludes that it has found the effective bandwidth of
the connection and can stop ramping up

This has a good chance of happening well before
packet loss would begin

42

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

BBR: Drain State

In measuring the bottleneck bandwidth, BBR probably
transmitted packets at a higher rate for a while
Some of them will be sitting in queues waiting to be
delivered
To drain those packets out of the buffers where they
languish, BBR will go into a “drain” state, during which
it will transmit below the measured bandwidth until it
has made up for the excess packets sent before

43

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

BBR: Steady State

Once the drain phase is done, BBR goes into the
steady-state mode where it paces outgoing packets
so that the packets in flight is more-or-less the
calculated BDP
Scale the rate up by 25% periodically to probe for an
increase in effective bandwidth

44

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Saltzer Chapter 7.6.1,
7.6.2, 7.6.3, 7.6.4, 7.6.5;

Keshav Chapter 9.7,
CUBIC paper, BBR paper

