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Congestion control — a 
network-wide problem 

of managing  
shared resources
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Shared resources: everywhere in a system

Resource sharing examples in systems: 
Many virtual processors (threads) sharing a few physical 
processors using a thread manager 
A multilevel memory manager creates the illusion of large, fast 
virtual memories by combining a small and fast shared 
memory with large and slow storage devices 

In networks, the resource that is shared is a set of 
communication links and the supporting packet 
forwarding switches 

They are geographically and administratively distributed — 
managing them is more complex!
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Analogy: Supermarket vs. Packet Switch

Queues are started to manage the problem that packets 
may arrive at a switch at a time when the outgoing link is 
already busy transmitting another packet 

Just like checkout lines in the supermarket 

Any time there is a shared resource, and the demand for 
that resource comes from several statistically 
independent sources, there will be fluctuations in the 
arrival of load 

Thus there will be fluctuations in the length of the queue, and the 
time spent waiting for service in the queue 
Offered load > capacity of a resource: overloaded
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Congestion Collapse

Competition for resource may lead to waste of resource 
Counter-intuitive, but the supermarket analogy can help 
understand it 

Customers who are tired of waiting may just walk out, leaving filled 
shopping carts behind 
Someone has to put the goods from abandoned carts back to the 
shelves 
One of two of the checkout clerks leave their registers to do so 
The rate of sales being rung up drops while they are away 
The queues at the remaining registers grow longer 
Causing more people to abandon their carts 
Eventually, the clerks will be doing nothing but restocking
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Self-sustaining nature of congestion collapse
Once temporary congestion induces a collapse, even if the 
offered load drops back to a level that the resource can 
handle, the already induced waste rate can continue to 
exceed the capacity of the resource 

This will cause it to continue to waste the resource, remain congested 
indefinitely
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CHAPTER 7 The Network as a System and as a System Component7–88

When developing or evaluating a resource management scheme, it is important to
keep in mind that you can’t squeeze blood out of a turnip: if a resource is congested,
either temporarily or chronically, delays in receiving service are inevitable. The best a
management scheme can do is redistribute the total amount of delay among waiting cus-
tomers. The primary goal of resource management is usually quite simple: to avoid
congestion collapse. Occasionally other goals, such as enforcing a policy about who gets
delayed, are suggested, but these goals are often hard to define and harder to achieve.
(Doling out delays is a tricky business; overall satisfaction may be higher if a resource
serves a few customers well and completely discourages the remainder, rather than leav-
ing all equally disappointed.)

Chapter 6 suggested two general approaches to managing congestion. Either: 

•   increase the capacity of the resource, or
•   reduce the offered load.

In both cases the goal is to move quickly to a state in which the load is less than the capac-
ity of the resource. When measures are taken to reduce offered load, it is useful to
separately identify the intended load, which would have been offered in the absence of

FIGURE 7.42

Offered load versus useful work done. The more work offered to an ideal unlimited resource, 
the more work gets done, as indicated by the 45-degree unlimited resource line. Real 
resources are limited, but in the case with no waste, useful work asymptotically approaches 
the capacity of the resource. On the other hand, if overloading the resource also wastes it, use-
ful work can decline when offered load increases, as shown by the congestion collapse line.
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Primary goal of resource management

Avoid congestion collapse! 
by increasing the capacity of the resource 
by reducing the offered load 

A congestion control system is fundamentally a 
feedback system 

A delay in the feedback path can lead to 
oscillations in load
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The Supermarket and Call Centre Analogies

In a supermarket, a store manager can be used to watch the 
queues at the checkout lines 

Whenever there are more than two or three customers in any line, the 
manager calls for staff elsewhere in the store to drop what they are 
doing, and temporarily take stations as checkout clerks 
This practically increases capacity 

When you call customer service, you may hear an automatic 
response message 

“Your call is important to us.  It will be 30 minutes to we can answer.” 
This may lead some callers to hang up and try again at a different time 
This practically decrease load 

Both may lead to oscillations
9



ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Possible ideas to 
address these 

challenges (Ch. 7.6.5)
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Overprovisioning

Basic idea: configure each link of the network to have 125% or 
200% as much capacity as the offered load at the busiest 
minute of the day 

Works best on interior links of a large network, where no individual 
client represents more than a tiny fraction of the load 
Average load offered by a large number of statistically independent 
sources is relatively stable 

Problems 
Odd events can disrupt statistical independence 
Overprovisioning on one link will move congestion to another  
At the edge, statistical averaging stops working — flash crowd 
User usage patterns may adapt to the additional capacity

11



ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Pricing in a market: the “invisible hand”

Since network resources are just another commodity with 
limited availability, it should be possible to use pricing as a 
congestion control mechanism 

If demand for a resource temporarily exceeds its capacity, clients will 
bid up the price 
The increased price will cause some clients to defer their use of the 
resource until a time when it is cheaper, thereby reducing offered load 
It will also induce additional suppliers to provide more capacity 

Challenges — 
How do we make it work on the short time scales of congestion? 
Clients need a way to predict the costs in the short term, too 
There has to be a minimal barrier of entry by alternate suppliers
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How do we address 
these challenges? 

Decentralized schemes 
are extremely scalable
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Case in point:  
the Internet
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Cross-layer 
Cooperation: Feedback 

(Ch. 7.6.3)
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Cross-layer feedback: basic idea

The packet forwarder that notices congestion provides 
feedback to one or more end-to-end layer sources 
The end-to-end source responds by reducing its offered 
load 
The best solution: the packet forwarder simply discards 
the packet 

Simple and reliable!
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Which packet to discard?
The choice is not obvious — 

The simplest strategy, tail drop, limits the size of the queue, and any packet 
that arrives when the queue is full gets discarded 
A better technique, called random drop, chooses a victim from the queue 
at random 

The sources that are contributing the most to congestion are the most likely to 
receive the feedback 

Another refinement, called early drop, begins dropping packets before the 
queue is completely full, in the hope of alerting the source sooner 
The goal of early drop is to start reducing the offered load as soon as the 
possibility of congestion is detected, rather than waiting till congestion is 
confirmed — avoidance rather than recovery 
Random drop + early drop: random early detection (RED)
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Cross-layer 
Cooperation: Control
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What should the end-to-end protocol do?

The end-to-end protocol learns of a lost packet, what 
now? 
One idea: just retransmit the lost packet, and continue to 
send more data as rapidly as its application supplies it 

This way, it may discover that by sending packets at the greatest 
rate it can sustain, it will push more data through the congested 
packet forwarder 
The problem: If this is the standard mode of operation of all end 
hosts, congestion will set in and all will suffer 
“The tragedy of the commons”
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Two things the end-to-end protocol can do

Be careful about the use of timers 
involves setting the timer’s value 

Pace the rate at which it sends data — automatic rate 
adaptation 

involves managing the flow control window 
Both require having an estimate of the round-trip time 
between the two ends of the protocol

20
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The retransmit timer
With congestion, an expired timer may imply that either a 
queue in the network has grown too long, or a packet 
forwarder has intentionally discarded the packet 
We need to reduce the rate of retransmissions 
Idea: round trip time estimates 

develop an estimate of the round trip time by directly measuring it  
Longer queuing delays will increase the observed round-trip times 
These observations will increase the round-trip estimate used for 
setting future retransmit timers 

When a timer does expire, exponential backoff for the timer 
interval should be used for retransmitting the same packet 

Effectively avoids contributing to congestion collapse
21
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Automatic rate adaptation

The flow control window and the receiver’s buffer should both 
be at least as large as the bottleneck data rate multiplied by 
the round trip time — the BDP (“bandwidth-delay product”) 
But if it is larger, it will result in more packets piling up in the 
queue of the bottleneck link 
We need to ensure that the flow control window is no larger 
than necessary 
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The original design of TCP

In the original TCP design, the only form of acknowledgment 
to the sender was “I have received all the bytes up to X.” 

But not in the form of “I am missing bytes Y through Z.” 

The consequences — 
When a timer expired due to a lost packet, as soon as the sender 
retransmitted that packet, the timer of the next packet expired, causing 
its retransmission 
This will repeat until the next acknowledgment returns, a full round trip 
later 
On long-delay routes, the flow control window may be large 
Each discarded packet will trigger retransmission of a window full of 
packets — congestion collapse!
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Solution?

By the time this effect was noticed, TCP was already 
widely deployed, so changes to TCP were severely 
constrained — they have to be “backward compatible” 
The result — one expired timer leads to slow start 

Send just one packet, and wait for its acknowledgment 
For each acknowledged packet, add one to the window size 
In each RTT, the number of packets that the sender sends doubles 
This repeats till 

The receiver’s window size has been reached — the network is not the 
bottleneck 
a packet loss has been detected — how?
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Duplicate acknowledgment
The receiving TCP implementation is modified slightly 

Whenever it receives an out-of-order packet, it sends back a duplicate of 
its latest acknowledgment 
Such a duplicate can be interpreted by the sender as a NAK 

The sender then operates in an “equilibrium mode” 
Upon duplicate acknowledgment, the sender retransmits just the first 
unacknowledged packet and also drops its window size to some fixed 
fraction of its previous size — after this it probes gently for more capacity 
by doing 
Additive increase: whenever all the packets in a round-trip time are 
successfully acknowledged, the sender increases the window size by 1 
Multiplicative decrease: Whenever a duplicate acknowledgment arrives 
again, the sender decreases the size of the window again, by a fixed 
fraction

25
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The AIMD TCP

26
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CHAPTER 7 The Network as a System and as a System Component7–96

•   Additive increase: Whenever all of the packets in a round trip time are successfully
acknowledged, the sender increases the size of the window by one.

•   Multiplicative decrease: Whenever a duplicate acknowledgment arrives, the sender
decreases the size of the window by the fixed fraction.

4.  Restart: If the sender’s retransmission timer expires, self-pacing based on ACKs has been
disrupted, perhaps because something in the network has radically changed. So the sender
waits a short time to allow things to settle down, and then goes back to slow start, to allow
assessment of the new condition of the network. 

By interpreting a duplicate acknowledgment as a negative acknowledgment for a single packet,
TCP eliminates the massive retransmission blizzard, and by reinitiating slow start on each timer
expiration, it avoids contributing to congestion collapse.

The figure below illustrates the evolution of the TCP window size with time in the case where
the bottleneck is inside the network. TCP begins with one packet and slow start, until it detects
the first packet loss. The sender immediately reduces the window size by half and then begins
gradually increasing it by one for each round trip time until detecting another lost packet. This
sawtooth behavior may continue indefinitely, unless the retransmission timer expires. The
sender pauses and then enters another slow start phase, this time switching to additive increase
as soon as it reaches the window size it would have used previously, which is half the window
size that was in effect before it encountered the latest round of congestion.

This cooperative scheme has not been systematically analyzed, but it seems to work in practice,
even though not all of the traffic on the Internet uses TCP as its end-to-end transport protocol.
The long and variable feedback delays that inevitably accompany lost packet detection by the
use of duplicate acknowledgments induce oscillations (as evidenced by the sawteeth) but the
additive increase—multiplicative decrease algorithms strongly damp those oscillations.

Exercise 7.12 compares slow start with “fast start”, another scheme for establishing an initial
estimate of the window size. There have been dozens (perhaps hundreds) of other proposals for
fixing both real and imaginary, problems in TCP. The interested reader should consult Section
7.4 in the Suggestions for Further Reading.

Window
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This is where the story 
stops in a typical textbook
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But it is a story far from 
what happens in reality!
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Real-world measurement studies have shown

By probing 5000 popular web servers, researchers 
have found that only 15-20% uses AIMD TCP! 

P. Yang, et al. “TCP Congestion Avoidance Algorithm 
Identification,” IEEE ICDCS 2011. 

What about the other 80%? 
It turns out that web servers, which are what define 
the Internet, use a wide variety of different TCP 
protocols, each with its own congestion control 
protocol 

But why?
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The fundamental problem with AIMD TCP

As Internet evolves, the number of long latency and 
high bandwidth networks grows 
The Bandwidth and Delay Product (BDP) — The total 
number of packets in flight, determined by the flow 
control window size on the sender, must fully utilize 
the bandwidth 
Standard AIMD TCP increases its congestion window 
size too slowly in high BDP environments 

Example: Bandwidth 10Gbps, RTT 100ms, Packet size 1250 
bytes, takes 10,000 seconds to fully utilize
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New congestion control — design objectives

Highly scalable to high BDP environments 
Very slow (gentle) window increase at the 
saturation point 
Fair to AIMD TCP flows — backward compatibility
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Binary Increase Congestion (BIC)

After a packet loss, reduces its window by a 
multiplicative factor of β, the default is 0.2 
The window size just before reduction is set to Wmax and 
after reduction Wmin 
In the next step, it finds the midpoint using these two 
sizes and jump there — binary search 

But if midpoint is very far from Wmin, a constant value called Smax 
is used 

If no loss, Wmin is set to the new window size

32
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Binary Increase Congestion (BIC)

The process continues until the increment is less than 
a constant value of Smin 

Then it is set to the maximum window 

If no loss, new maximum must be found and it enters 
a ”max probing” phase 
Window growth function is exactly symmetric to the 
previous part

33

BIC is proposed by Injong Rhee’s group at NCSU in an INFOCOM 2004 
paper, and later was used in the Linux kernel and set to the default TCP 

(since 2.6.13)
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BIC: During the “congestion epoch”

Congestion epoch: defined as the interval between two 
packet losses
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A. BIC Window Growth Function 
Before delving into CUBIC, let us examine the features of 

BIC. The main feature of BIC is its unique window growth 
function. 

Fig. 1 shows the growth function of BIC. When it gets a 
packet loss event, BIC reduces its window by a multiplicative 
factor �. The window size just before the reduction is set to the 
maximum Wmax and the window size just after the reduction is 
set to the minimum Wmin. Then, BIC performs a binary search 
using these two parameters F by jumping to the GmidpointH 
between Wmax and Wmin.  Since packet losses have occurred at 
Wmax, the window size that the network can currently handle 
without loss must be somewhere between these two numbers.  

However, jumping to the midpoint could be too much 
increase within one RTT, so if the distance between the 
midpoint and the current minimum is larger than a fixed 
constant, called Smax, BIC increments the current window size 
by Smax (linear increase). If BIC does not get packet losses at the 
updated window size, that window size becomes the new 
minimum. If it gets a packet loss, that window size becomes the 
new maximum. This process continues until the window 
increment is less than some small constant called Smin at which 
point, the window is set to the current maximum. So the 
growing function after a window reduction will be most likely 
to be a linear one followed by a logarithmic one (marked as 
Gadditive increaseH and Gbinary searchH respectively in Fig. 1).  

If the window grows past the maximum, the equilibrium 
window size must be larger than the current maximum and a 
new maximum must be found. BIC enters a new phase called 
Gmax probing.H Max probing uses a window growth function 
exactly symmetric to those used in additive increase and binary 
search F only in a different order: it uses the inverse of binary 
search (which is logarithmic; its reciprocal will be exponential) 
and then additive increase. Fig. 1 shows the growth function 
during max probing. During max probing, the window grows 
slowly initially to find the new maximum nearby, and after 
some time of slow growth, if it does not find the new maximum 
(i.e., packet losses), then it guesses the new maximum is further 
away so it switches to a faster increase by switching to additive 
increase where the window size is incremented by a large fixed 
increment. 

 
The good performance of BIC comes from the slow increase 

around Wmax and linear increase during additive increase and 
max probing. 

 

B. CUBIC Window Growth Function 
Although BIC achieves pretty good scalability, fairness, and 

stability during the current high speed environments, the BICSs 
growth function can still be too aggressive for TCP, especially 
under short RTT or low speed networks. Furthermore, the 
several different phases of window control add a lot of 
complexity in analyzing the protocol. We have been searching 
for a new window growth function that while retaining most of 
strengths of BIC (especially, its stability and scalability), 
simplifies the window control and enhances its TCP 
friendliness.  

In this paper, we introduce a new high-speed TCP variant: 
CUBIC. As the name of the new protocol represents, the 
window growth function of CUBIC is a cubic function, whose 
shape is very similar to the growth function of BIC. CUBIC is 
designed to simplify and enhance the window control of BIC. 
More specifically, the congestion window of CUBIC is 
determined by the following function: 

max
3)( WKtCWcubic ���                       (1) 

where C is a scaling factor, t is the elapsed time from the last 
window reduction, Wmax is the window size just before the last 

window reduction, and 3
max CWK �� , where � is a constant 

multiplication decrease factor applied for window reduction at 
the time of loss event (i.e., the window reduces to  �Wmax at the 
time of the last reduction). 

Fig. 2 shows the growth function of CUBIC with the origin 
at Wmax. The window grows very fast upon a window reduction, 
but as it gets closer to Wmax, it slows down its growth. Around 
Wmax, the window increment becomes almost zero. Above that, 
CUBIC starts probing for more bandwidth in which the 
window grows slowly initially, accelerating its growth as it 
moves away from Wmax. This slow growth around Wmax 
enhances the stability of the protocol, and increases the 
utilization of the network while the fast growth away from Wmax 
ensures the scalability of the protocol. 

The cubic function ensures the intra-protocol fairness among 
the competing flows of the same protocol. To see this, suppose 
that two flows are competing on the same end-to-end path. The 
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Problems with BIC

BIC works very well in production, but in low speed or short 
RTT networks it is too aggressive for TCP 
Different phases like binary search increase, max probing, 
Smax and Smin, make its implementation not very efficient 
A new congestion control protocol is required to solve these 
problems, while keeping its advantages of stability and 
scalability

35



ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

CUBIC
As the name suggests, it uses cubic function for window 
growth 
It uses time instead of RTT to increase the window size 
It contains a “TCP mode” to behave the same as AIMD TCP 
when RTTs are short
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growth function can still be too aggressive for TCP, especially 
under short RTT or low speed networks. Furthermore, the 
several different phases of window control add a lot of 
complexity in analyzing the protocol. We have been searching 
for a new window growth function that while retaining most of 
strengths of BIC (especially, its stability and scalability), 
simplifies the window control and enhances its TCP 
friendliness.  

In this paper, we introduce a new high-speed TCP variant: 
CUBIC. As the name of the new protocol represents, the 
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where C is a scaling factor, t is the elapsed time from the last 
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at Wmax. The window grows very fast upon a window reduction, 
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CUBIC, again, was proposed by Injong Rhee’s group at NCSU, and was 
later used in the Linux kernel and set to the default TCP (since 2.6.19)
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CUBIC: Controlling the window size

After a packet loss, reduces its window by a multiplicative 
factor of β, the default is 0.2 
The window size just before reduction is set to Wmax 

After it enters into congestion avoidance, it starts to increase 
the window using a cubic function 
The plateau of cubic function is set to Wmax 

Size of the window grows in concave mode to reach Wmax, 
then it enters the convex part
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Real-world measurement studies

Over 40% of the web servers uses BIC/CUBIC TCP! 
P. Yang, et al. “TCP Congestion Avoidance Algorithm 
Identification,” IEEE ICDCS 2011. 
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BBR: Congestion-Based 
Congestion Control  

(Google Inc., make-tcp-fast project, 
available in Linux Kernel since 4.9)
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BBR: Main Ideas

BBR algorithm differs from loss-based congestion 
control in that it pays relatively little attention to 
packet loss 
Instead, it focuses on the actual bottleneck bandwidth 
In the “startup” state, it behaves like most traditional 
congestion-control algorithms  

quickly ramps up the sending rate in an attempt to 
measure the bottleneck bandwidth
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BBR: Stop Ramping Up Early

Instead of continuing to ramp up until it experiences a 
dropped packet, it watches the bottleneck bandwidth 
measured for the last several round-trip times 
Once the bottleneck bandwidth stops rising, BBR 
concludes that it has found the effective bandwidth of 
the connection and can stop ramping up 

This has a good chance of happening well before 
packet loss would begin
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BBR: Drain State

In measuring the bottleneck bandwidth, BBR probably 
transmitted packets at a higher rate for a while 
Some of them will be sitting in queues waiting to be 
delivered 
To drain those packets out of the buffers where they 
languish, BBR will go into a “drain” state, during which 
it will transmit below the measured bandwidth until it 
has made up for the excess packets sent before
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BBR: Steady State

Once the drain phase is done, BBR goes into the 
steady-state mode where it paces outgoing packets 
so that the packets in flight is more-or-less the 
calculated BDP 
Scale the rate up by 25% periodically to probe for an 
increase in effective bandwidth
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Saltzer Chapter 7.6.1, 
7.6.2, 7.6.3, 7.6.4, 7.6.5; 

Keshav Chapter 9.7, 
CUBIC paper, BBR paper


