Episode 4. Principles of Congestion Control

Baochun Li
Department of Electrical and Computer Engineering
University of Toronto

Congestion control — a
nhetwork-wide problem
of managing

shared resources

Saltzer Chapter 7.6.1,7.6.2,
7.6.3,7.6.4,7.6.5: Keshav
Chapter 9.7, CUBIC paper,
BBR paper

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Shared resources: everywhere in a system

Resource sharing examples in systems:
Many virtual processors (threads) sharing a few physical
processors using a thread manager

A multilevel memory manager creates the illusion of large, fast
virtual memories by combining a small and fast shared
memory with large and slow storage devices

In networks, the resource that is shared is a set of
communication links and the supporting packet
forwarding switches

They are geographically and administratively distributed —
managing them is more complex!

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Analogy: Supermarket vs. Packet Switch

Queues are started to manage the problem that packets
may arrive at a switch at a time when the outgoing link is
already busy transmitting another packet

Just like checkout lines in the supermarket

Any time there is a shared resource, and the demand for
that resource comes from several statistically
independent sources, there will be fluctuations in the
arrival of load

Thus there will be fluctuations in the length of the queue, and the
time spent waiting for service in the queue

Offered load > capacity of a resource: overloaded

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 5

Congestion Collapse

Competition for resource may lead to waste of resource

Counter-intuitive, but the supermarket analogy can help
understand it

Customers who are tired of waiting may just walk out, leaving filled
shopping carts behind

Someone has to put the goods from abandoned carts back to the
shelves

One of two of the checkout clerks leave their registers to do so

ne rate of sales being rung up drops while they are away

ne gueues at the remaining registers grow longer
Causing more people to abandon their carts
Eventually, the clerks will be doing nothing but restocking

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 6

Self-sustaining nature of congestion collapse

Once temporary congestion induces a collapse, even if the
offered load drops back to a level that the resource can
handle, the already induced waste rate can continue to
exceed the capacity of the resource

This will cause it to continue to waste the resource, remain congested

unlimited resource
capacity !
4 of a limited . =
’ resource
/
I
|
p— — I ——————————————————
useful o
workk |\ /7 S<___._ limited resource
done with no waste
_ _ _ . congestion
y4 collapse
offered load .
ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 7

Primary goal of resource management

Avoid congestion collapse!

by increasing the capacity of the resource
by reducing the offered load

A congestion control system is fundamentally a
feedback system

A delay in the feedback path can lead to
oscillations in load

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Supermarket and Call Centre Analogies

In a supermarket, a store manager can be used to watch the
queues at the checkout lines

Whenever there are more than two or three customers in any line, the
manager calls for staff elsewhere in the store to drop what they are
doing, and temporarily take stations as checkout clerks

This practically increases capacity

When you call customer service, you may hear an automatic
response message

“Your call is important to us. It will be 30 minutes to we can answer.”

nis may lead some callers to hang up and try again at a different time

nis practically decrease load

Both may lead to oscillations

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 9
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE————

Possible ideas to

address these
challenges (Ch. 7.6.5)

Overprovisioning

Basic idea: configure each link of the network to have 125% or
200% as much capacity as the offered load at the busiest
minute of the day

Works best on interior links of a large network, where no individual
client represents more than a tiny fraction of the load

Average load offered by a large number of statistically independent
sources is relatively stable

Problems

Odd events can disrupt statistical independence
Overprovisioning on one link will move congestion to another
At the edge, statistical averaging stops working — flash crowd
User usage patterns may adapt to the additional capacity

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 1

Pricing in a market: the “invisible hand”

Since network resources are just another commodity with
limited availability, it should be possible to use pricing as a
congestion control mechanism

If demand for a resource temporarily exceeds its capacity, clients will
bid up the price

The increased price will cause some clients to defer their use of the
resource until a time when it is cheaper, thereby reducing offered load

It will also induce additional suppliers to provide more capacity
Challenges —

How do we make it work on the short time scales of congestion?
Clients need a way to predict the costs in the short term, too
There has to be a minimal barrier of entry by alternate suppliers

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

12

How do we address
these challenges?
Decentralized schemes
are extremely scalable

Case in point:
the Internet

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE————

Cross-layer
Cooperation: Feedback

(Ch.7.6.3)

Cross-layer feedback: basic idea

The packet forwarder that notices congestion provides
feedback to one or more end-to-end layer sources

The end-to-end source responds by reducing its offered
load

The best solution: the packet forwarder simply discards
the packet

Simple and reliable!

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 16

Which packet to discard?

The choice is not obvious —

The simplest strategy, tail drop, limits the size of the queue, and any packet
that arrives when the queue is full gets discarded

A better technique, called random drop, chooses a victim from the queue
at random

The sources that are contributing the most to congestion are the most likely to
receive the feedback

Another refinement, called early drop, begins dropping packets before the
queue is completely full, in the hope of alerting the source sooner

The goal of early drop is to start reducing the offered load as soon as the
possibility of congestion is detected, rather than waiting till congestion is
confirmed — avoidance rather than recovery

Random drop + early drop: random early detection (RED)

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 17
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE————

Cross-layer
Cooperation: Control

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE————

What should the end-to-end protocol do?

The end-to-end protocol learns of a lost packet, what
now?

One idea: just retransmit the lost packet, and continue to
send more data as rapidly as its application supplies it

This way, it may discover that by sending packets at the greatest
rate it can sustain, it will push more data through the congested
packet forwarder

The problem: If this is the standard mode of operation of all end
hosts, congestion will set in and all will suffer

“The tragedy of the commons”

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 19
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE————

Two things the end-to-end protocol can do

Be careful about the use of timers

Involves setting the timer's value

Pace the rate at which it sends data — automatic rate
adaptation

iInvolves managing the flow control window

Both require having an estimate of the round-trip time
between the two ends of the protocol

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 20
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE————

The retransmit timer

With congestion, an expired timer may imply that either a
queue in the network has grown too long, or a packet
forwarder has intentionally discarded the packet

We need to reduce the rate of retransmissions

ldea: round trip time estimates

develop an estimate of the round trip time by directly measuring it
Longer queuing delays will increase the observed round-trip times

These observations will increase the round-trip estimate used for
setting future retransmit timers

When a timer does expire, exponential backoff for the timer
interval should be used for retransmitting the same packet

Effectively avoids contributing to congestion collapse

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 21

Automatic rate adaptation

The flow control window and the receiver's buffer should both
be at least as large as the bottleneck data rate multiplied by
the round trip time — the BDP (“bandwidth-delay product”)

But if it is larger, it will result in more packets piling up in the
queue of the bottleneck link

We need to ensure that the flow control window is no larger
than necessary

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 22
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE————

The original design of TCP

In the
to the

But

original TCP design, the only form of acknowledgment
sender was “l have received all the bytes up to X."

not in the form of “I am missing bytes Y through Z."

The consequences —

When a timer expired due to a lost packet, as soon as the sender
retransmitted that packet, the timer of the next packet expired, causing
Its retransmission

This will repeat until the next acknowledgment returns, a full round trip
later

On
Eac

ong-delay routes, the flow control window may be large

N discarded packet will trigger retransmission of a window full of

packets — congestion collapse!

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 23

By the time this effect was noticed, TCP was already
widely deployed, so changes to TCP were severely
constrained — they have to be “backward compatible”

The result — one expired timer leads to slow start

Send just one packet, and wait for its acknowledgment
For each acknowledged packet, add one to the window size
In each RTT, the number of packets that the sender sends doubles

his repeats till

The receiver's window size has been reached — the network is not the
bottleneck

a packet loss has been detected — how?

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 24

Duplicate acknowledgment

The receiving TCP implementation is modified slightly

Whenever it receives an out-of-order packet, it sends back a duplicate of
its latest acknowledgment

Such a duplicate can be interpreted by the sender as a NAK

The sender then operates in an “equilibrium mode”

Upon duplicate acknowledgment, the sender retransmits just the first
unacknowledged packet and also drops its window size to some fixed
fraction of its previous size — after this it probes gently for more capacity
by doing

Additive increase: whenever all the packets in a round-trip time are
successfully acknowledged, the sender increases the window size by 1

Multiplicative decrease: Whenever a duplicate acknowledgment arrives
again, the sender decreases the size of the window again, by a fixed
fraction

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

25

The AIMD TCP

duplicate acknowledgment
reqelved

\ multiplicative
decrease

additive
INcrease

Window
size

slow start,
again
1

timI r
X expires, |
\ stop sending

slow start

Time ——=>

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 26

This is where the story
stops in a typical textbook

But it is a story far from
what happens in reality!

Real-world measurement studies have shown

By probing 5000 popular web servers, researchers
have found that only 15-20% uses AIMD TCP!

P.Yang, et al. "TCP Congestion Avoidance Algorithm
|dentification,” IEEE ICDCS 2011.

What about the other 80%?

It turns out that web servers, which are what define
the Internet, use a wide variety of different TCP
protocols, each with its own congestion control
protocol

But why?

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 29

The fundamental problem with AIMD TCP

As Internet evolves, the number of long latency and
high bandwidth networks grows

The Bandwidth and Delay Product (BDP) — The total
number of packets in flight, determined by the flow

control window size on the sender, must fully utilize
the bandwidth

Standard AIMD TCP increases its congestion window
size too slowly in high BDP environments

Example: Bandwidth 10Gbps, RTT 100ms, Packet size 1250
bytes, takes 10,000 seconds to fully utilize

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 30

New congestion control — design objectives

Highly scalable to high BDP environments

Very slow (gentle) window increase at the
saturation point

Fair to AIMD TCP flows — backward compatibility

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 31

Binary Increase Congestion (BIC)

After a packet loss, reduces its window by a
multiplicative factor of (3, the default is 0.2

The window size just before reduction is set to Wmax and
after reduction Wnin

In the next step, it finds the midpoint using these two
sizes and jump there — binary search

But if midpoint is very far from Wnin, a constant value called Smax
IS used

If no loss, Whin IS set to the new window size

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 32

Binary Increase Congestion (BIC)

The process continues until the increment is less than
a constant value of Smin

Then it is set to the maximum window

If no loss, new maximum must be found and it enters
a "max probing” phase

Window growth function is exactly symmetric to the
previous part

BIC is proposed by Injong Rhee's group at NCSU in an INFOCOM 2004
paper, and later was used in the Linux kernel and set to the default TCP
(since 2.6.13)

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 33

BIC: During the “congestion epoch”

Congestion epoch: defined as the interval between two
packet losses

Additive Increase Binary Search

< > >

. Max Probing
< >

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 34

Problems with BIC

BIC works very well in production, but in low speed or short
RTT networks it is too aggressive for TCP

Different phases like binary search increase, max probing,
Smax and Smin, make its implementation not very efficient

A new congestion control protocol is required to solve these
problems, while keeping its advantages of stability and
scalability

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 35

CUBIC

As the name suggests, it uses cubic function for window
growth

It uses time instead of RTT to increase the window size

It contains a “TCP mode" to behave the same as AIMD TCP
when RTTs are short

Steadv State Behavior

Max Probing
< >

CUBIC, again, was proposed by Injong Rhee's group at NCSU, and was
later used in the Linux kernel and set to the default TCP (since 2.6.19)

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 36
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE————

CUBIC: Controlling the window size

After a packet loss, reduces its window by a multiplicative
factor of 3, the default is 0.2

The window size just before reduction is set to Wmax

After it enters into congestion avoidance, it starts to increase
the window using a cubic function

The plateau of cubic function is set to Wmax

Size of the window grows in concave mode to reach Wmax,
then it enters the convex part

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 37
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE————

Real-world measurement studies

Over 40% of the web servers uses BIC/CUBIC TCP!

P.Yang, et al. "“"TCP Congestion Avoidance Algorithm
|dentification,” IEEE ICDCS 2011.

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 38
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE————

BBR: Congestion-Based
Congestion Control

(Google Inc., make-tcp-fast project,
available in Linux Kernel since 4.9)

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE————

BDP+
BDP BtlneckBufSize
buffer

app limited bandwidth limited limited
)
E
: \%"\%\N
- eﬁx
; AN
c
=
g RTprop

BtlBw
]
=
@
(2 4
> .
~ optimum loss-based
= operating congestion
8 point control
Is here operates here
Amount Inflight

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

BBR: Main Ideas

BBR algorithm differs from loss-based congestion
control in that it pays relatively little attention to
packet loss

Instead, it focuses on the actual bottleneck bandwidth

In the “startup” state, it behaves like most traditional
congestion-control algorithms

quickly ramps up the sending rate in an attempt to
measure the bottleneck bandwidth

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 41

BBR: Stop Ramping Up Early

Instead of continuing to ramp up until it experiences a
dropped packet, it watches the bottleneck bandwidth

measured for the last several round-trip times

Once the bottleneck bandwidth stops rising, BBR
concludes that it has found the effective bandwidth of

the connection and can stop ramping up

This has a good chance of happening well before
packet loss would begin

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

BBR: Drain State

In measuring the bottleneck bandwidth, BBR probably
transmitted packets at a higher rate for a while

Some of them will be sitting in queues waiting to be
delivered

To drain those packets out of the buffers where they
languish, BBR will go into a “drain” state, during which
it will transmit below the measured bandwidth until it
has made up for the excess packets sent before

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 43

BBR: Steady State

Once the drain phase is done, BBR goes into the
steady-state mode where it paces outgoing packets
so that the packets in flight is more-or-less the
calculated BDP

Scale the rate up by 25% periodically to probe for an
Increase in effective bandwidth

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 44

Saltzer Chapter 7.6.1,
7.6.2,76.3,7.6.4,7.6.5;
Keshav Chapter 9.7,
CUBIC paper, BBR paper

ECE 1771: Quality of Service — Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

